Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Vet Res ; 55(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173025

RESUMO

Avian influenza viruses (AIV) of the H7N7 subtype are enzootic in the wild bird reservoir in Europe, cause infections in poultry, and have sporadically infected humans. The non-structural protein PB1-F2 is encoded in a second open frame in the polymerase segment PB1 and its sequence varies with the host of origin. While mammalian isolates predominantly carry truncated forms, avian isolates typically express full-length PB1-F2. PB1-F2 is a virulence factor of influenza viruses in mammals. It modulates the host immune response, causing immunopathology and increases pro-inflammatory responses. The role of full-length PB1-F2 in IAV pathogenesis as well as its impact on virus adaptation and virulence in poultry remains enigmatic. Here, we characterised recombinant high pathogenicity AIV (HPAIV) H7N7 expressing or lacking PB1-F2 in vitro and in vivo in chickens. In vitro, full-length PB1-F2 modulated viability of infected chicken fibroblasts by limiting apoptosis. In chickens, PB1-F2 promoted gastrointestinal tropism, as demonstrated by enhanced viral replication in the gut and increased cloacal shedding. PB1-F2's effects on cellular immunity however were marginal. Overall, chickens infected with full-length PB1-F2 virus survived for shorter periods, indicating that PB1-F2 is also a virulence factor in bird-adapted viruses.


Assuntos
Vírus da Influenza A Subtipo H7N7 , Vírus da Influenza A , Influenza Aviária , Humanos , Animais , Galinhas/metabolismo , Virulência , Proteínas Virais/metabolismo , Vírus da Influenza A/metabolismo , Fatores de Virulência/genética , Mamíferos
2.
Sci Transl Med ; 15(725): eadg3451, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055798

RESUMO

Tobacco smoking doubles the risk of active tuberculosis (TB) and accounts for up to 20% of all active TB cases globally. How smoking promotes lung microenvironments permissive to Mycobacterium tuberculosis (Mtb) growth remains incompletely understood. We investigated primary bronchoalveolar lavage cells from current and never smokers by performing single-cell RNA sequencing (scRNA-seq), flow cytometry, and functional assays. We observed the enrichment of immature inflammatory monocytes in the lungs of smokers compared with nonsmokers. These monocytes exhibited phenotypes consistent with recent recruitment from blood, ongoing differentiation, increased activation, and states similar to those with chronic obstructive pulmonary disease. Using integrative scRNA-seq and flow cytometry, we identified CD93 as a marker for a subset of these newly recruited smoking-associated lung monocytes and further provided evidence that the recruitment of monocytes into the lung was mediated by CCR2-binding chemokines, including CCL11. We also show that these cells exhibit elevated inflammatory responses upon exposure to Mtb and accelerated intracellular growth of Mtb compared with mature macrophages. This elevated Mtb growth could be inhibited by anti-inflammatory small molecules, providing a connection between smoking-induced pro-inflammatory states and permissiveness to Mtb growth. Our findings suggest a model in which smoking leads to the recruitment of immature inflammatory monocytes from the periphery to the lung, which results in the accumulation of these Mtb-permissive cells in the airway. This work defines how smoking may lead to increased susceptibility to Mtb and identifies host-directed therapies to reduce the burden of TB among those who smoke.


Assuntos
Mycobacterium tuberculosis , Poluição por Fumaça de Tabaco , Tuberculose , Humanos , Monócitos , Macrófagos/microbiologia , Tuberculose/microbiologia , Pulmão
4.
Sci Rep ; 13(1): 18613, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903877

RESUMO

The concept of donor-unrestricted T cells (DURTs) comprises a heterogeneity of lymphoid cells that respond to an abundance of unconventional epitopes in a non-MHC-restricted manner. Vaccinologists strive to harness this so far underexplored branch of the immune system for new vaccines against tuberculosis. A particular division of DURTs are T cells that recognize their cognate lipid antigen in the context of CD1-molecules. Mycobacteria are characterized by a particular lipid-rich cell wall. Several of these lipids have been shown to be presented to T cells via CD1b-molecules. Guinea pigs functionally express CD1b and are hence an appropriate small animal model to study the role of CD1b-restricted, lipid-specific immune responses. In the current study, guinea pigs were vaccinated with BCG or highly-purified, liposome-formulated phosphatidylinositol-hexa-mannoside (PIM6) to assess the effect of CD1-restricted DURTs on the course of infection after virulent Mycobacterium tuberculosis (Mtb) challenge. Robust PIM6-specific T cell-responses were observed both after BCG- and PIM6-vaccination. The cellular response was significantly reduced in the presence of monoclonal, CD1b-blocking antibodies, indicating that a predominant part of this reactivity was CD1b-restricted. When animals were challenged with Mtb, BCG- and PIM6-vaccinated animals showed significantly reduced pathology, smaller necrotic granulomas in lymph node and spleen and reduced bacterial loads. While BCG conferred an almost sterile protection in this setting, compared to control animals' lesions were reduced roughly by two thirds in PIM6-vaccinated. Comprehensive histological and transcriptional analyses in the draining lymph node revealed that protected animals showed reduced transcription-levels of inflammatory cyto- and chemokines and higher levels of CD1b-expression on professional antigen cells compared to controls. Although BCG as a comparator induced by far stronger effects, our observations in the guinea pig model suggest that CD1b-restricted, PIM6-reactive DURTs contribute to immune-mediated containment of virulent Mtb.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Cobaias , Animais , Vacina BCG , Tuberculose/prevenção & controle , Vacinação , Fosfatidilinositóis
5.
Eur J Immunol ; 53(12): e2250332, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609807

RESUMO

Knowledge about early immunity to SARS-CoV-2 variants of concern mainly comes from the analysis of human blood. Such data provide limited information about host responses at the site of infection and largely miss the initial events. To gain insights into compartmentalization and the early dynamics of host responses to different SARS-CoV-2 variants, we utilized human angiotensin converting enzyme 2 (hACE2) transgenic mice and tracked immune changes during the first days after infection by RNAseq, multiplex assays, and flow cytometry. Viral challenge infection led to divergent viral loads in the lungs, distinct inflammatory patterns, and innate immune cell accumulation in response to ancestral SARS-CoV-2, Beta (B.1.351) and Delta (B.1.617.2) variant of concern (VOC). Compared to other SARS-CoV-2 variants, infection with Beta (B.1.351) VOC spread promptly to the lungs, leading to increased inflammatory responses. SARS-CoV-2-specific antibodies and T cells developed within the first 7 days postinfection and were required to reduce viral spread and replication. Our studies show that VOCs differentially trigger transcriptional profiles and inflammation. This information contributes to the basic understanding of immune responses immediately postexposure to SARS-CoV-2 and is relevant for developing pan-VOC interventions including prophylactic vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Anticorpos Antivirais , Camundongos Transgênicos , Imunidade
6.
Front Immunol ; 14: 1223260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638020

RESUMO

Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.


Assuntos
COVID-19 , Infecções Respiratórias , Tuberculose , Animais , SARS-CoV-2 , Modelos Animais , Mamíferos
7.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298652

RESUMO

Mouse guanylate-binding proteins (mGBPs) are recruited to various invasive pathogens, thereby conferring cell-autonomous immunity against these pathogens. However, whether and how human GBPs (hGBPs) target M. tuberculosis (Mtb) and L. monocytogenes (Lm) remains unclear. Here, we describe hGBPs association with intracellular Mtb and Lm, which was dependent on the ability of bacteria to induce disruption of phagosomal membranes. hGBP1 formed puncta structures which were recruited to ruptured endolysosomes. Furthermore, both GTP-binding and isoprenylation of hGBP1 were required for its puncta formation. hGBP1 was required for the recovery of endolysosomal integrity. In vitro lipid-binding assays demonstrated direct binding of hGBP1 to PI4P. Upon endolysosomal damage, hGBP1 was targeted to PI4P and PI(3,4)P2-positive endolysosomes in cells. Finally, live-cell imaging demonstrated that hGBP1 was recruited to damaged endolysosomes, and consequently mediated endolysosomal repair. In summary, we uncover a novel interferon-inducible mechanism in which hGBP1 contributes to the repair of damaged phagosomes/endolysosomes.


Assuntos
Proteínas de Ligação ao GTP , Fagossomos , Humanos , Animais , Camundongos , Proteínas de Ligação ao GTP/metabolismo , Fagossomos/metabolismo , Interferons/metabolismo , Endossomos/metabolismo
8.
Cells ; 12(6)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980300

RESUMO

Community-acquired pneumonia remains a major contributor to global communicable disease-mediated mortality. Neutrophils play a leading role in trying to contain bacterial lung infection, but they also drive detrimental pulmonary inflammation, when dysregulated. Here we aimed at understanding the role of microRNA-223 in orchestrating pulmonary inflammation during pneumococcal pneumonia. Serum microRNA-223 was measured in patients with pneumococcal pneumonia and in healthy subjects. Pulmonary inflammation in wild-type and microRNA-223-knockout mice was assessed in terms of disease course, histopathology, cellular recruitment and evaluation of inflammatory protein and gene signatures following pneumococcal infection. Low levels of serum microRNA-223 correlated with increased disease severity in pneumococcal pneumonia patients. Prolonged neutrophilic influx into the lungs and alveolar spaces was detected in pneumococci-infected microRNA-223-knockout mice, possibly accounting for aggravated histopathology and acute lung injury. Expression of microRNA-223 in wild-type mice was induced by pneumococcal infection in a time-dependent manner in whole lungs and lung neutrophils. Single-cell transcriptome analyses of murine lungs revealed a unique profile of antimicrobial and cellular maturation genes that are dysregulated in neutrophils lacking microRNA-223. Taken together, low levels of microRNA-223 in human pneumonia patient serum were associated with increased disease severity, whilst its absence provoked dysregulation of the neutrophil transcriptome in murine pneumococcal pneumonia.


Assuntos
MicroRNAs , Pneumonia Pneumocócica , Animais , Humanos , Camundongos , Inflamação/genética , Inflamação/microbiologia , Inflamação/patologia , Pulmão/patologia , Camundongos Knockout , MicroRNAs/genética , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae
9.
Antimicrob Agents Chemother ; 67(4): e0143822, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975792

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the world's leading cause of mortality from a single bacterial pathogen. With increasing frequency, emergence of drug-resistant mycobacteria leads to failures of standard TB treatment regimens. Therefore, new anti-TB drugs are urgently required. BTZ-043 belongs to a novel class of nitrobenzothiazinones, which inhibit mycobacterial cell wall formation by covalent binding of an essential cysteine in the catalytic pocket of decaprenylphosphoryl-ß-d-ribose oxidase (DprE1). Thus, the compound blocks the formation of decaprenylphosphoryl-ß-d-arabinose, a precursor for the synthesis of arabinans. An excellent in vitro efficacy against M. tuberculosis has been demonstrated. Guinea pigs are an important small-animal model to study anti-TB drugs, as they are naturally susceptible to M. tuberculosis and develop human-like granulomas after infection. In the current study, dose-finding experiments were conducted to establish the appropriate oral dose of BTZ-043 for the guinea pig. Subsequently, it could be shown that the active compound was present at high concentrations in Mycobacterium bovis BCG-induced granulomas. To evaluate its therapeutic effect, guinea pigs were subcutaneously infected with virulent M. tuberculosis and treated with BTZ-043 for 4 weeks. BTZ-043-treated guinea pigs had reduced and less necrotic granulomas than vehicle-treated controls. In comparison to the vehicle controls a highly significant reduction of the bacterial burden was observed after BTZ-043 treatment at the site of infection and in the draining lymph node and spleen. Together, these findings indicate that BTZ-043 holds great promise as a new antimycobacterial drug.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Cobaias , Animais , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/química , Oxirredutases
10.
Nat Commun ; 14(1): 816, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781853

RESUMO

Combining optimized spike (S) protein-encoding mRNA vaccines to target multiple SARS-CoV-2 variants could improve control of the COVID-19 pandemic. We compare monovalent and bivalent mRNA vaccines encoding B.1.351 (Beta) and/or B.1.617.2 (Delta) SARS-CoV-2 S-protein in a transgenic mouse and a Wistar rat model. The blended low-dose bivalent mRNA vaccine contains half the mRNA of each respective monovalent vaccine, but induces comparable neutralizing antibody titres, enrichment of lung-resident memory CD8+ T cells, antigen-specific CD4+ and CD8+ responses, and protects transgenic female mice from SARS-CoV-2 lethality. The bivalent mRNA vaccine significantly reduces viral replication in both Beta- and Delta-challenged mice. Sera from bivalent mRNA vaccine immunized female Wistar rats also contain neutralizing antibodies against the B.1.1.529 (Omicron BA.1 and BA.5) variants. These data suggest that low-dose and fit-for-purpose multivalent mRNA vaccines encoding distinct S-proteins are feasible approaches for extending the coverage of vaccines for emerging and co-circulating SARS-CoV-2 variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Animais , Feminino , Camundongos , Ratos , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Camundongos Transgênicos , Modelos Animais , Vacinas de mRNA/imunologia , Ratos Wistar , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Combinadas/imunologia
11.
Vaccines (Basel) ; 11(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36851196

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron and its subvariants (BA.2, BA.4, BA.5) represented the most commonly circulating variants of concern (VOC) in the coronavirus disease 2019 (COVID-19) pandemic in 2022. Despite high vaccination rates with approved SARS-CoV-2 vaccines encoding the ancestral spike (S) protein, these Omicron subvariants have collectively resulted in increased viral transmission and disease incidence. This necessitates the development and characterization of vaccines incorporating later emerging S proteins to enhance protection against VOC. In this context, bivalent vaccine formulations may induce broad protection against VOC and potential future SARS-CoV-2 variants. Here, we report preclinical data for a lipid nanoparticle (LNP)-formulated RNActive® N1-methylpseudouridine (N1mΨ) modified mRNA vaccine (CV0501) based on our second-generation SARS-CoV-2 vaccine CV2CoV, encoding the S protein of Omicron BA.1. The immunogenicity of CV0501, alone or in combination with a corresponding vaccine encoding the ancestral S protein (ancestral N1mΨ), was first measured in dose-response and booster immunization studies performed in Wistar rats. Both monovalent CV0501 and bivalent CV0501/ancestral N1mΨ immunization induced robust neutralizing antibody titers against the BA.1, BA.2 and BA.5 Omicron subvariants, in addition to other SARS-CoV-2 variants in a booster immunization study. The protective efficacy of monovalent CV0501 against live SARS-CoV-2 BA.2 infection was then assessed in hamsters. Monovalent CV0501 significantly reduced SARS-CoV-2 BA.2 viral loads in the airways, demonstrating protection induced by CV0501 vaccination. CV0501 has now advanced into human Phase 1 clinical trials (ClinicalTrials.gov Identifier: NCT05477186).

12.
Oncoimmunology ; 11(1): 2148850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507091

RESUMO

BCL11B, an essential transcription factor for thymopoiesis, regulates also vital processes in post-thymic lymphocytes. Increased expression of BCL11B was recently correlated with the maturation of NK cells, whereas reduced BCL11B levels were observed in native and induced T cell subsets displaying NK cell features. We show that BCL11B-depleted CD8+ T cells stimulated with IL-15 acquired remarkable innate characteristics. These induced innate CD8+ (iiT8) cells expressed multiple innate receptors like NKp30, CD161, and CD16 as well as factors regulating migration and tissue homing while maintaining their T cell phenotype. The iiT8 cells effectively killed leukemic cells spontaneously and neuroblastoma spheroids in the presence of a tumor-specific monoclonal antibody mediated by CD16 receptor activation. These iiT8 cells integrate the innate natural killer cell activity with adaptive T cell longevity, promising an interesting therapeutic potential. Our study demonstrates that innate T cells, albeit of limited clinical applicability given their low frequency, can be efficiently generated from peripheral blood and applied for adoptive transfer, CAR therapy, or combined with therapeutic antibodies.


Assuntos
Interleucina-15 , Linfócitos T Citotóxicos , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Linfócitos T Citotóxicos/metabolismo , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Fatores de Transcrição/metabolismo
13.
Cell Rep ; 40(10): 111305, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070695

RESUMO

Bats harbor high-impact zoonotic viruses often in the absence of disease manifestation. This restriction and disease tolerance possibly rely on specific immunological features. In-depth molecular characterization of cellular immunity and imprinting of age on leukocyte compartments remained unexplored in bats. We employ single-cell RNA sequencing (scRNA-seq) and establish immunostaining panels to characterize the immune cell landscape in juvenile, subadult, and adult Egyptian rousette bats (ERBs). Transcriptomic and flow cytometry data reveal conserved subsets and substantial enrichments of CD79a+ B cells and CD11b+ T cells in juvenile animals, whereas neutrophils, CD206+ myeloid cells, and CD3+ T cells dominate as bats reach adulthood. Despite differing frequencies, phagocytosis of circulating and tissue-resident myeloid cells and proliferation of peripheral and splenic lymphocytes are analogous in juvenile and adult ERBs. We provide a comprehensive map of the immune landscape in ERBs and show age-imprinted resilience progression and find that variability in cellular immunity only partly recapitulates mammalian archetypes.


Assuntos
Quirópteros , Marburgvirus , Animais , Tolerância Imunológica , Marburgvirus/genética , Baço
14.
Sci Rep ; 11(1): 21662, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737406

RESUMO

Bats are the only mammals capable of powered flight and their body temperature can reach up to 42 °C during flight. Additionally, bats display robust type I IFN interferon (IFN-I) responses and some species constitutively express IFN-α. Reference genes with stable expression under temperature oscillations and IFN-I release are therefore critical for normalization of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) data in bats. The expression stability of reference genes in Rousettus aegyptiacus remains elusive, although this species is frequently used in the infection research. We selected ACTB, EEF1A1, GAPDH and PGK1 as candidate reference genes and evaluated their expression stability in various tissues and cells from this model bat species upon IFN-I treatment at 35 °C, 37 °C and 40 °C by qRT-PCR. We employed two statistical algorithms, BestKeeper and NormFinder, and found that EEF1A1 exhibited the highest expression stability under all tested conditions. ACTB and GAPDH displayed unstable expression upon temperature change and IFN-I treatment, respectively. By normalizing to EEF1A1, we uncovered that GAPDH expression was significantly induced by IFN-I in R. aegyptiacus. Our study identifies EEF1A1 as the most suitable reference gene for qRT-PCR studies upon temperature changes and IFN-I treatment and unveils the induction of GAPDH expression by IFN-I in R. aegyptiacus. These findings are pertinent to other bat species and may be relevant for non-volant mammals that show physiological fluctuations of core body temperature.


Assuntos
Quirópteros/genética , Perfilação da Expressão Gênica/normas , Algoritmos , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Software
15.
Front Immunol ; 12: 712948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566968

RESUMO

Infection and inflammation can augment local Na+ abundance. These increases in local Na+ levels boost proinflammatory and antimicrobial macrophage activity and can favor polarization of T cells towards a proinflammatory Th17 phenotype. Although neutrophils play an important role in fighting intruding invaders, the impact of increased Na+ on the antimicrobial activity of neutrophils remains elusive. Here we show that, in neutrophils, increases in Na+ (high salt, HS) impair the ability of human and murine neutrophils to eliminate Escherichia coli and Staphylococcus aureus. High salt caused reduced spontaneous movement, degranulation and impaired production of reactive oxygen species (ROS) while leaving neutrophil viability unchanged. High salt enhanced the activity of the p38 mitogen-activated protein kinase (p38/MAPK) and increased the interleukin (IL)-8 release in a p38/MAPK-dependent manner. Whereas inhibition of p38/MAPK did not result in improved neutrophil defense, pharmacological blockade of the phagocyte oxidase (PHOX) or its genetic ablation mimicked the impaired antimicrobial activity detected under high salt conditions. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) overcame high salt-induced impairment in ROS production and restored antimicrobial activity of neutrophils. Hence, we conclude that high salt-impaired PHOX activity results in diminished antimicrobial activity. Our findings suggest that increases in local Na+ represent an ionic checkpoint that prevents excessive ROS production of neutrophils, which decreases their antimicrobial potential and could potentially curtail ROS-mediated tissue damage.


Assuntos
Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Microambiente Celular , Neutrófilos/fisiologia , Oxirredutases/metabolismo , Fagócitos/fisiologia , Sódio/metabolismo , Animais , Infecções Bacterianas/imunologia , Resistência à Doença , Suscetibilidade a Doenças , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Mol Med Rep ; 24(5)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34558650

RESUMO

It has been shown from the isolation and characterization of exosomes from cell culture media supplemented with fetal bovine serum that both their quality and purity are affected. The high abundance of serum proteins, including bovine cell derived exosomes, is also a potential source of contaminants, which may result in appreciable yields of impure exosomes, thereby leading to artifacts. Isolation and characterization of exosomes from cells maintained under serum­free conditions should therefore ensure the high quality necessary for medical applications. To meet this end, the present study aimed to characterize exosomes released from THP­1 macrophages cultured in serum­free, ultra­centrifuged medium upon infection with the human pathogen Mycobacterium tuberculosis (Mtb). Macrophages differentiated from the human cell line THP­1 were infected at a multiplicity of infection (MOI) of 5. Macrophages were cultivated in CellGenix® GMP DC serum­free ultra­centrifuged medium for 4, 24 and 48 h at 37˚C in a humidified atmosphere with 5% CO2. Total exosome isolation reagent was used to extract the exosomes from the cell culture supernatants of naïve and Mtb­infected THP­1 macrophages. The size and purity of the exosomes isolated were subsequently assessed by various methods, including nanoparticle tracking analysis, flow cytometry, MACSPlex exosome analysis, and western blotting. The serum­free, ultra­centrifuged medium was found to support the proliferation of the THP­1 cells successfully. The nanoparticle tracking analysis data revealed that the majority of the isolated particles were within the size range of exosomes (i.e., 30­150 nM). The MACSPlex exosome analysis confirmed the expression of the exosomal markers, CD9, CD63 and CD81. Furthermore, western blot analysis of the isolated exosomes indicated the presence of CD9, CD63, CD81 and lysosomal associated membrane protein­1 (LAMP­1), and also confirmed the absence of Mtb proteins. Taken together, these data provide evidence that serum­free, ultra­centrifuged CellGenix® GMP DC medium is suitable for application in exosome research, and may significantly advance such studies. Therefore, the use of serum­free medium for exosome isolation purposes could offer considerable advantages, and constitute a significant improvement in the growing field of extracellular vesicle research. The use of more sensitive methods represents an advance that will enable researchers to rule out the presence of Mtb pathogenic proteins in exosomes isolated from infected serum­free cell cultures.


Assuntos
Exossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Biomarcadores , Células Cultivadas , Vesículas Extracelulares/metabolismo , Citometria de Fluxo , Interações Hospedeiro-Patógeno/imunologia , Humanos
17.
Nat Commun ; 12(1): 4048, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193869

RESUMO

The ongoing SARS-CoV-2 pandemic necessitates the fast development of vaccines. Recently, viral mutants termed variants of concern (VOC) which may escape host immunity have emerged. The efficacy of spike encoding mRNA vaccines (CVnCoV and CV2CoV) against the ancestral strain and the VOC B.1.351 was tested in a K18-hACE2 transgenic mouse model. Naive mice and mice immunized with a formalin-inactivated SARS-CoV-2 preparation were used as controls. mRNA-immunized mice develop elevated SARS-CoV-2 RBD-specific antibody and neutralization titers which are readily detectable, but significantly reduced against VOC B.1.351. The mRNA vaccines fully protect from disease and mortality caused by either viral strain. SARS-CoV-2 remains undetected in swabs, lung, or brain in these groups. Despite lower neutralizing antibody titers compared to the ancestral strain BavPat1, CVnCoV and CV2CoV show complete disease protection against the novel VOC B.1.351 in our studies.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Genoma Viral/genética , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , Células Vero
18.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201509

RESUMO

The innate immune system relies on families of pattern recognition receptors (PRRs) that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses. Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs as innate immune sensors for its detection. We highlight the mechanisms employed by various pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of stress-associated molecular patterns (SAMPs). We postulate that integration of information about microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate plasticity and precision in elaborating responses to microbes of variable virulence.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/fisiologia , Infecções/metabolismo , Receptores de Reconhecimento de Padrão/fisiologia , Animais , Citoesqueleto/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Homeostase , Humanos , Inflamassomos/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Biossíntese de Proteínas , Receptores de Reconhecimento de Padrão/química
19.
EMBO Rep ; 22(7): e51678, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33987949

RESUMO

Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor ß-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.


Assuntos
Mycobacterium tuberculosis , Peixe-Zebra , Animais , Galactanos , Galectinas/genética , Camundongos
20.
EMBO J ; 40(13): e106272, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942347

RESUMO

Cellular stress has been associated with inflammation, yet precise underlying mechanisms remain elusive. In this study, various unrelated stress inducers were employed to screen for sensors linking altered cellular homeostasis and inflammation. We identified the intracellular pattern recognition receptors NOD1/2, which sense bacterial peptidoglycans, as general stress sensors detecting perturbations of cellular homeostasis. NOD1/2 activation upon such perturbations required generation of the endogenous metabolite sphingosine-1-phosphate (S1P). Unlike peptidoglycan sensing via the leucine-rich repeats domain, cytosolic S1P directly bound to the nucleotide binding domains of NOD1/2, triggering NF-κB activation and inflammatory responses. In sum, we unveiled a hitherto unknown role of NOD1/2 in surveillance of cellular homeostasis through sensing of the cytosolic metabolite S1P. We propose S1P, an endogenous metabolite, as a novel NOD1/2 activator and NOD1/2 as molecular hubs integrating bacterial and metabolic cues.


Assuntos
Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Esfingosina/análogos & derivados , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , NF-kappa B/metabolismo , Peptidoglicano/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA